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The gravitational n-body problem is remarkably unstable numerically, in spite of the 
fact that near constancy of the energy and angular momentum makes it appear that the 
calculation should be reliable. In an attempt to understand why this should be so, the 
properties of numerical solutions were explored through a perturbation technique in 
which equations of motion for the differences between two systems are integrated 
numerically. Results of a series of experiments show that the differences between com- 
puted systems and exact solutions to the differential equations tend to lie near the 
hypersurface on which the first integrals are conserved and preferentially along the 
trajectory through the T-space. The numerical instability remains even when conservation 
of the first integrals is improved by several orders of magnitude through a partial 
iterative refinement method. Implications of these results concerning the utility of 
computations of the gravitational n-body problem arc discussed. It may be possibie 
to treat numerical effects as a kind of relaxation process, in which the relaxation time 
is identified with the characteristic e-folding time of error growth. 

1. INTRODUCTION 

The gravitational n-body problem has a long and distinguished history. The 
case n = 2 is the well-known Kepler problem, while n = 3 is the famous “three- 
body problem.” Larger values of n may be expected to lead to even more intractible 
problems. Computer experiments to study the evolution from some (possibly 
arbitrary but otherwise well defined) initial state as an initial-value problem seem 
to promise a useful approach. This has been the case with problems in celestial 
mechanics and with the orbits of artificial satellites. The results, when the method 
is applied to stellar dynamical problems (simulation of star clusters, galaxies, etc.) 
have not been nearly as satisfactory. 
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Among the various kinds of simulations of star clusters, that which looks most 
promising-an attempt to integrate the n-body equations of motion as precisely 
as computational methods allow-has led to unusual difficulties. These are more 
of numerical character than due to inadequate sampling of the parameter space 
represented by the choice of initial conditions. The first integrals of motion (energy, 
angular momentum, etc.) are well conserved, but other quantities are remarkably 
difficult to compute reliably [l]. This led to suggestions of special methods to test 
the reliability of computed results [2]. The most dramatic confirmation of the 
difficulties is contained in Lecar’s comparative study of calculations carried out by 
different workers from an identical set of initial conditions [3]. Lecar’s comparison 
is dramatic because it shows that even simple quantities which one might expect 
to be reliably computed are surprisingly unreliable. Not only do different numbers 
of particles escape from the clusters computed by various investigators, but even 
the identity of the escaping particles is different. Even so simple a parameter as the 
radius of a sphere containing half the particles varied by as much as a factor of two 
among the various calculations. Similar difficulties were encountered in the inter- 
comparison of other test quantities. More recent studies indicate that the same 
program deck, compiled and executed on different computers, shows similar 
differences in detailed comparisons [4]. The test of [I] is more stringent still: 
The same program in the same computer with sets of data differing only at the 
roundoff level soon leads to markedly differing systems. It is not as dramatic 
as Lecar’s study because the tests for differences deal with subtler quan- 
tities. 

Under the circumstances, it is difficult to distinguish real physical effects from 
artifacts of the computations. Attempts to study the properties of physical systems 
must be based on some understanding of purely computational effects. This is not 
a qualitative difference from other kinds of computations, but the gravitational 
n-body problem presents a situation in which the need for caution and under- 
standing is more apparent and urgent than with most calculations. 

Some investigations into the nature of the computational effects are reported in 
this paper. While the picture is nowhere near complete, some useful insights are 
afforded that permit a preliminary discussion of the kinds of physical quantities 
that may be reliably computed. More importantly, a time-scale characteristic of 
the calculation emerges such that physical quantities that develop more slowly 
than this time scale may not be reliably computed. l’his finally leads to a discussion 
of the probable utility of gravitational n-body calculations. The arguments are 
largely based on cxpcrimental studies of the computations themselves. 

In the studies reported earlier [I], the numerical stability of gravitational n-body 
calculations, considered as an initial-value problem, was investigated experimen- 
tally. The experimental technique made use of two systems, initially very similar, 
each integrated as a distinct problem. Calling the coordinates and momenta of 
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the two systems qi*‘, qjl’, pi’), pil’ respectively (i 1. I, 2,..., 3n for iz particles), a 
normed separation 

A:! =. c \(q:” -- z T' q!")' -1. - ($2' -- p,!l))2! 

z lIti L ‘ ! 

was computed and served as a measure of the amount by which the two systems 
diverged. The separation, d, showed a characteristic exponential growth as a 
function of time, with superposed large “spikes” [l, 21. The rapid separation of the 
representative points in the phase space was argued to be characteristic of the 
physics of the problem as expressed in the form of the differential equations and 
not to be peculiar to numerical representations in computers. 

This problem is further discussed in this paper. An equation of motion for the 
difference vector between the two systems is obtained. The equation is valid in the 
sense of a perturbation and looks as if it might possess exponentially growing solu- 
tions. Such exponentially growing solutions imply instability. However, the coel%- 
cients in the equation vary with the time as the reference system evolves in a manner 
which makes it difficult to prove whether or not there are exponentially growing 
solutions. In addition to the development of the perturbation equations, further 
experimental results are presented which show the manner in which numerica! 
effects interact with the “unstable” system represented by the differential equations 
in computer expcrimcnts. 

A method of partial iterative refinements that keeps the first integrals of motion 
very nearly constant is described in a companion paper [5]. The arguments of that 
paper are not based on comparison of two complerc calculations as are those of 
this paper; those arguments only require comparison of the present computed 
values of the first integrals with their original values. However, the partial iterative 
refinement method was developed to investigate the effect of tight control of the 
first integrals on the numerical stability of the gravitational {z-body calcuiation: 
the conclusions of this paper are strengthened by the results of studies using the 
method of partial iterative refinements. Although the gravitational n-body cal- 
culation is so “unstable” that the method is not sufficient to stabilize it, the method 
of partial iterative refinements should be useful with other kinds of calculations, 
where it might suffice to stabilize an otherwise unstable numerical calculation. 
Partial iterative refinements are principally useful with the gravitational rr-body 
problem as a diagnostic tool. 

II. FORMULATION 

The problem may be considered in the 6n-dimensional r-space. Let p”), q(l) 
and pC2), q(*) represent two points in the F-space. These are not to be regarded as 
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representatives of ensembles. Let Sp = p12) - p(l), Sq = qc2) - q(l) be “small” 
quantities. The motion is governed by a Hamiltonian H(p, q), through the usual 
canonical equations of motion. In the gravitational n-body problem, the Hamil- 
tonian H, which is a function of position in the r-space, is smooth almost every- 
where. Equations of motion for 6~ and Sq can be constructed: 

%H E2H -- 
Zp 

+-sp+22H 
2p2 zp sq sq-j- . . . -z$ 

8H C2H x - _-- 
3 f3q l3p 

sp - $$6q - . . . + ?!$ 

t-3 

(3) 

The derivatives in the second lines of Eqs. (2) and (3) are to be evaluated at the 
point p(l), q(l). If all terms were retained, these equations would be exact to the 
radius of convergence of the Taylor series expansions, or, equivalently, as long as 
6p, Sq do not extend to a singularity of H. The linearized form of these equations 
is: 

and 

(4) 

(5) 

where, again, the derivatives are to be evaluated at p(l), q(l), which is the position 
of the first system in the phase space- the actual values to be inserted depend on 
the details of evolution of the unperturbed system. The second form, obtained by 
inserting the canonical equations, shows that the equations are just what one 
would expect them to be. 

Two reductions of this system of equations are useful. The first is simply 
notational: let 5 be written as a 2-component vector 

(it actually has 6n components). Then the perturbation equations can be written 
in the usual form for a (time-dependent) homogeneous system of equations: 

E=MF, (f-3 
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where the elements of the matrix M -= M(t) can be read off from Eqs. (4) and (5). 
The time dependence enters through the unperturbed motion of one of the two 
systems being considered. The second reduction comes from noting that, in a 
canonical coordinate system based on cartesian coordinates, with forces that are 
not velocity dependent (the usual formulation for a computer calculation), the 
matrix M reduces to 3n x 311 blocks: 

I 17) 

The I in the upper right-hand corner is a 3n x 311 identity matrix if all particles 
have unit mass. Generalization to various particle masses represents no compiica- 
tion of principle, but obscures the notation, so the remainder of the discussion 
will be based on the equal-mass case. The element in the lower left-hand corner is 
the 3n x 3n gradient of the forces. This term, readily derived from the total 
potential energy term in the Hamiltonian (with a slightly changed notation: iet 
xf) represent the i-th component of the position vector of particle CX, iy - 1,2,3,... II, 
i :: 1,2, 3) acts between individual particles: 

(grad F)ig”) = 

i; i Gm(“)m(“)(xj(“) -_ xj”‘)) 
=- w i-T(x’f’ -. x(“))2]3/2 -\ 1 li 1. 

This term has the expected tensor character-for the inverse square-law force 
appropriate to the gravitational problem, it looks like the field of a dipole ([6]), 
leading to a kind of “polarization” when the perturbed systems are considered. 
Note that (grad F) is symmetric under index (i,j) and particle (3, ,R) interchange. 
The 01 ‘= /3 elements can be obtained by summing over /? # CL With equal particle 
masses, the terms I~(“)RP) can bc suppressed. 

In Eq. (6), the elements of M are given functions of the time, even though they 
are not a priori known but depend on the actual trajectory of the unperturbed 
system through l7 The system could be integrated directly if M and dM/dt com- 
muted, but they do not. The system can be generalized to consider all solutions at 
once by integrating the matrix equation 

q=My; Y(0) = I. (9) 
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Because the trace of M is zero, the determinant of Y is constant. This, of course, is 
a restatement of the Liouville theorem. But the constancy of the determinant of Y 
only means that growing solutions are balanced by decreasing solutions in such a 
way that the product of all solutions stays constant. 

In an attempt to treat a system like Eq. (6) or Eq. (9), the obvious thing to try 
is to diagonalize M, if it can be done. But the diagonalizing transformation must 
itself be time dependent, so the notion of diagonalization is not likely to be 
useful. Since the trace of M is zero, all eigcnvalues must sum to zero (note that 
these arc eigenvalues of the matrix M, and do not imply that Eq. (6) is an eigen- 
value problem). Thus? any nonzcro real parts must contain at least some that are 
positive. But the existence of some positive real parts need not imply exponentially 
growing solutions: because the mode-structure (the columns of the diagonalizing 
transformation) is time dependent, a mode with a positive real part may later have 
a negative real part. 

If a system like Eq. (6) were not time dependent, it would have exponential 
solutions. Bounds for the admissible growth-rates of F might be established by 
inserting some kind of upper bound for elements of M. The exponentially growing 
solutions to the bounding equations are not likely to be useful bounds because 
they grow too rapidly. They must accommodate the large spikes of Refs. [I, 21. 

The normal techniques for investigating the character of solutions to systems of 
equations like Eq. (6) or Eq. (9) do not seem to offer much help (see, e.g., Bellman 
[7]). The elements of M continue to vary with the time-they show no tendency 
to settle down to some static condition after a long time. Any pcriodicity is of the 
order of a PoincarC recurrence-time. Replacement of the (grad F) part of M by 
averaged values will not help: (grad 1F) is essentially r$ multiplied by a spherical 
harmonic of second order. The average over all directions is zero.’ Because per- 
turbation solutions must be terminated once the separation of the two systems 
becomes comparable with interparticle separations in one system, approximate 
solutions as t --f 03 are of little interest. 

An interesting feature that follows from the structure of M (Eq. 7) is that one- 
dimensional systems and noninteracting hard-sphere systems, which have 
(grad I;) = 0 except when two “particles” collide, yield a system that does not 
have exponentially growing perturbation solutions. These systems are stable. 

An initial displacement along the trajectory is outstanding among the solutions 
that do not grow exponentially: 6q =-.: 4 at, 8~ = j St for some small 6t. The 
second form of Eqs. (4) and (5) reduce in this case to the usual expressions for 
d(Sq)/dt and d(&)/& since 6q and Sp are functions of q and p but not explicitly of 

*Technically, these terms cannot be averaged over all directions because of the constraints 
placed on the set of permissible inrerparticle separation vectors by the fact that there are many 
more such vectors than there arc particles. The particle positions may be taken as independent 
for the averaging, howeve& 
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time. Thus, in the mathematical solution, a perturbation initially along the tra- 
jectory will forever remain along the trajectory (if first-order expressions are vaiid). 

Finally, the form taken by the expressions for the conservation of the usuai 
first integrals of motion in this language is of some interest. Conservation of total 
momentum is typical: Pi = xep:“‘. The difference of total momentum of the two 
systems is the scalar product of the (6n-dimensional) gradient of total momentum 
and the displacement vector 

This allows for the variation of the perpendicular separation of the surfaces on 
which the integrals are constant-where the surfaces are farther apart, larger 
displacements in the direction of the gradient are allowed. The spatial part of 
(grad Pi) is zero, and the momentum components are unity. From these, it is 
readily verified that (grad Pi) is orthogonal to the normal trajectory: a displace- 
ment along the trajectory is given by 

( 1 

01 st, 

F 

and the scalar product is St C, Fp) = 0. With an arbitrary initial displacement, 

the initial momentum difference is 

but after a (small) time St, the change in momentum difference is given by 

But the result is just the variation in the summed forces, which is zero because the 
forces are taken as internally generated, with sums of zero. Expressions for the 
remaining integrals carry through similarly. 
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111. NUMERICAL EXPERIMENTS 

The advantages of the present formulation, apart from the insight afforded, are 
principally numerical. Rather than integrating two systems independently, and 
differencing tham, as implied by Eq. (I), the differential equation for the difference 
vector is separately integrated. Normally, this will not have a computational speed 
advantage: the integration of the differential equations for the difference vector 
requires (3n)2 operations per integration step, while separate integration of a 
second system requires about the same number. The quantities in (grad F) may be 
computed at little extra cost as F itself is being computed. As more sophisticated 
integration schemes are used for the direct integration of the unperturbed system, 
the speed advantage will definitely tip in favor of separate integrations whose 
results are differenced. Typically, the perturbation equations are not integrated as 
carefully as are the n-body equations governing the unperturbed system. 

When differencing two integrated systems, the differences obtained may not be 
much above the roundoff noise level at the start of a calculation-while with the 
perturbation formulation, the elements of the difference vector should be well 
above the roundoff level except in cases of extreme accidental cancellation. As a 
by-product of the better numerical accuracy afforded by the perturbation method, 
it is easier to introduce controlled initial difference vectors between the two systems, 
with confidence that the difference vector generated is the one actually being used 
rather than some other difference vector heavily conditioned by roundoff. This 
permits the use of initial difference vectors lying along the initial trajectory (of the 
unperturbed system), along the initial (grad E), and other interesting special cases. 

The perturbation formulation shows that the growth of the difference vector is 
essentially independent of the accuracy with which the trajectory of the unperturbed 
system is known. The perturbation calculation is valid only if the region between 
the points representing the two systems is well behaved, a condition that can be 
assured only as long as the difference vector is much “smaller” than any differ- 
ence vector that might be constructed from the unperturbed system by permuting 
two particles, for example. If this condition is met, the changes in (grad F) in 
going from one system point to the other will induce only second-order changes 
in the growth of the difference vector. This conclusion has been confirmed by 
some experimental studies reported later (Section IV). 

(a) Experiments Run 

The experiments were all run using 32 particles. Initial conditions were generated 
approximately according to the virial theorem using pseudo-random numbers. 
Initial perturbation vectors, S(O) were used that were arbitrary (only x:” f 0), 
were along the starting trajectory, or lay in the integral hypersurface but were 
orthogonal to the initial trajectory. The initial value of d2 [Eq. (l)] was 10m30, 
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while mean near interparticle separations corresponded to LI~ w l/10. Integrations 
were carried out with or without a partial iterative refinement procedure that 
keeps the first integrals of motion tightly constrained to their initial values. 
Finally, each of these conditions was run with three different sets of initial 
conditions, to try to eliminate effects peculiar to a particular set of starting condi- 
tions. 

The experiments consisted of monitoring d2 and the direction cosines of 5 
along the trajectory and along (grad E) as the system evolved. (Current values of 
the vector along the trajectory and that along (grad E) were used-not the initial 
values.) The direction cosines were computed in the obvious way from the scalar 
products of the vectors involved: 

cos 8~ = (5, grad E)/(m v’(grad E, grad Ej), (1 ij 

and show the fractional projection of 5 in the direction of interest without the 
confusion due to changing magnitudes of 4* = (K, 5). If the direction cosines 
behave randomly (i.e., if g takes on random directions) in 6n-dimensional space, 
the expectation of cos 8 is zero and its variance is 1/(6n), or, for fz y= 32, 
the standard deviation of cos 0 should be about 0.07. For all the scalar products, 
T and mi of Eq. (1) were taken as 1. As mentioned earlier, initial perturbation 
vectors S(O) were chosen in certain interesting directions such that d*(O) m IO-““. 
Typical calculations ran until dz was around lo-lo, but the summaries on which 
conclusions were based mostly stopped when 4* reached 10-2D. The value oi d” 
that might be reached by interchanging two particles that lay near each other 
might be about 1, so all experiments were restricted to perturbations enough 
smaller than the critical system dimensions that the first-order approximations 
should be valid. 

No experiments have been tried in which the full matrix equation (9) was 
integrated. Part of the reason for this is the mere logistical problem of interpreting 
the behavior of a 192 x 192 matrix (or even the smaller matrices that result with 
fewer particles). 

(b) Experimental Results 

The results obtained were, in their overall properties, essentially identical with 
those reported earlier [l, 21. Plots of In LIP vs time are essentially linear with large 
superimposed spikes in which Lla may temporarily increase by factors of 1O4-105, 
only to recover. Because these plots are so similar to those shown in Refs. [l] and 
[2], they are not reproduced here. The e-folding time of the underlying exponential 
(in AZ) is about l/l0 of a crossing time (the time a “typical” particle requires to go 
a distance equal to the “diameter” of the cluster-it is a rather crude concept 

581/g/3-10 
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usually defined from the virial theorem). The dependence of the e-folding time on 
particle number and integration step size were reported earlier [I] and were not 
further studied in the present investigation. The value obtained for the e-folding 
time was essentially independent of the direction of the initial perturbation and 
whether the partial iterative refinement procedure was being used. 

There were differences among the plots of In A2 vs t for different initial perturba- 
tion vectors g(O), even with the same initial positions and velocities for all the 
particles of the unperturbed system. However, as in the earlier experiments, the 
large “spikes” were present at the same time and at about the same amplitude 
irrespective of the nature of the initial perturbation. These “spikes” appear during 
a close encounter, and indicate that the two systems enter the close encounter with 
different phases. 

Calculations started from identical positions and velocities for all particles and 
with the same perturbation vector S(O), but run with and without the partial 
iterative refinements (of the 10 first integrals) had essentially identical plots of 
In da vs t initially. Soon (after about 9 crossing time) the plots deviated noticeably, 
getting farther and farther apart as the calculation proceeded. The basic slope, 
which indicates the exponential growth rate, remains the same, however. 

The direction cosines are particularly interesting. They indicate the direction of 
the difference vector relative to (grad E) and to the trajectory. The direction 
cosines, like In A2, show large fluctuations. Several features stand out. 

The direction cosine along the trajectory is usually well outside the 4.07 limit 
appropriate to a randomly-oriented vector. It frequently attains a value very near 1 
(occasionally in excess of .9999). It swings slowly from positive values to negative 
values. It is largest when the system is undergoing a close collision, as might be 
expected. Even when the system is not undergoing a particularly close collision, 
the direction cosine is often 330.2 to 0.6), well beyond the limits set by the variance. 
Even with initial perturbations along (grad E) (the initial projection along the 
trajectory is then zero), large projections along the trajectory develop very soon 
(tenths of a crossing time or less). The alternating sign of the projection onto the 
trajectory also occurs with the initial perturbation along the trajectory. The effect 
of the partial iterative refinement procedure is about the same with this projection 
as with In d2-essentially no difference until the two systems diverge from each 
other. 

The direction cosine along (grad E) is always significantly less than the rt.07 
standard deviation expected from random orientations. Its magnitude seldom 
exceeds 0.01. Again, it slowly alternates in sign, and has values of about the same 
magnitude for all initial perturbation vectors. The cases with the initial perturba- 
tion along the trajectory, which have no initial projection along (grad E), behave 
like the others-a component along (grad E) develops within 0.1 crossing time or 
less, and thereafter the direction cosine along (grad E) neither grows nor diminishes, 
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but rather seems to have some kind of noisy slow fluctuation. The rate of fluctua- 
tion is tied to the frequency of close encounters. A system undergoing frequent 
close encounters changes the sign of both direction cosines more frequently. 

IV. DISCUSSION 

The basic straight line in the plot of In d2 vs t indicates that the numerical 
solutions to Eq. (6) are dominated by exponentially growing solutions even though 
it is difficult to prove whether or not there should be solutions of that character to 
the differential equations. This behavior continues as long as perturbation solutions 
are valid. 

The numerical calculations do things that the mathematical solution indicates 
that they should not do. For example, they promptly develop components along 
the gradients to the integrals. 

The direction cosines indicate that the difference vector tends to lie principali) 
along the trajectory, although jts components in all directions in the hypersurface 
of first integrals [5] are probably large. Its components orthogonal to that hyper- 
surface tend to be significantly smaller than the componcots of a randomly-oriented 
vector of equal length. However, as the ditference vector grows with the passage of 
time, the relative size of components lying in and orthogonal to the integral hyper- 
surface remain about the same. 

The iterative refinement procedure made little change in the gravitationai n-body 
calculation, by the measure of the rate at which representative points of two 
computed systems separate in the phase space. The growth of in A2 with : is 
essentially the same with and without the partial iterative refinements. Calculations 
started from identical initial conditions, one run with the partial iterative refine- 
ment, the other without, yielded plots of In A’ vs t that were initially indistinguish- 
able, but with slowly increasing difference. By half a crossing time, the two plots 
are noticeably different, and by one crossing time, they are quite different. The 
basic slopes continue to be the same, but the “spikes” and other such detailed 
features are quite different. By this time, the value of f12 typically has grown to 
about 10-20. This is the experimental result obtained using the partial iterative 
refmemcnts as a diagnostic tool. 

The essential similarity of plots of In A2 vs t for otherwise identical runs differing 
only in the use (or not) of the partial iterative refinement procedure is to be cx- 
petted. As indicated earlier, the growth of the difference vector is expected to be 
independent of the accuracy with which the trajectory of the unperturbed system 
is known. Because the difference vector does not swim around as much in 
the directions perpendicular to the integral hypersurface as it does within the 
hypersurface, the restriction imposed on the 3Zparticle system by forcing the 
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integrals to be conserved is effectively much less than a reduction from 192 to 182 
dimensions-it is more like a reduction from 183 to 182 dimensions. Such a small 
reduction would be very dithcult to find experimentally. 

A picture emerges in which the numerical difference vector distinguishes direc- 
tions orthogonal to the integral hypersurface and further distinguishes the tra- 
jectory among those directions lying in the hypersurface. It prefers to go along the 
trajectory, but it makes only small excursions in directions orthogonal to the 
hypersurface, preferring to make up the remainder of its length in the hypersurface 
but in directions other than that of the trajectory. The volume in which it can swim 
about grows with the time, retaining its elongated disk-like shape. This volume is 
not subject to the Liouville theorem; this is another way in which the calculated 
system differs from the mathematical system. 

At each integration step, roundoff and truncation errors introduce some noise 
which is an additional perturbation on the displacement vector. The “noise vector” 
may be thought of as being resolved into a basis which is constructed from the 
(instantaneous) eigenvectors of M. The components of growing eigenvectors 
grow-in this way, the fastest-growing eigenvector will soon dominate the system. 
With a changing eigcnvector basis (due to the time dependence of M), the domin- 
ance will trade off from one eigenvector to another-but the numerical growth 
continues through this process. Whether the differential-equation system Eq. (6) 
has exponentially growing solutions or not, the numerical systems are experiment- 
ally found to have them. 

Although the differential equations (6) possess as many decreasing solutions as 
growing ones, all the numerical examples found so far have only shown increasing 
solutions. This is reminiscent of the usual discussions of stability analysis, in which 
it is argued that just one unstable mode is sufficient to render the entire system 
unstable. The decomposition of roundoff and truncation noise is standard too. 
Note that it has not been asserted that this system is unstable. There are formal 
difficulties in comparing these results (and the prejudices stated here) to any of the 
criteria for stability. It seems likely, however, that the gravitational n-body calcula- 
tion may be unstable in the sense that near any trajectory (in the r-space) there 
lies another trajectory that departs from the first in such a way that the “distance” 
between the two grows exponentially with the time until some kind of limiting 
process takes over. 

What is surprising in the present case is the growth rate indicated by the e-folding 
times. If an upper bound to the growth rate is experimentally estimated from the 
rate necessary to accommodate the rising edge of the large “spikes,” that growth 
rate is only about ten times the e-folding rate actually observed. The gravitational 
n-body calculation must be as close to unstable as any kind of calculation commonly 
undertaken. There are stable finite-difference approximations to it according to 
the usual criteria for the stability of initial-value calculations [2]. The gravitational 
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n-body calculation may therefore be of interest to computational theory as an 
example in which the interplay between the physical problem and numerical 
computation leads to an unusually large error growth rate. 

Standish [8] has shown that the growth rate of the exponentially increasing 
difference vector can be reduced by modifying the force law to provide a near-cutoff‘ 
to the interaction. He used a force derivable from a ?-body potential of the form: 

4 = (x2 .f y2 .I_ z2 + a”)-1’2, (12) 

where x, v, and z represent the differences of the three coordinates for two particles 
in question. When the offset, a, is about the mean closest encounter distance or 
larger, a marked reduction in the growth rate results. There are still some “spikes,” 
although they are not as large and lack the very steep edges. The ratio of slopes on 
the typical rising edge of a “spike” to the general growth in In A2 is about the same 
as noted above. Thus, both the experimental upper bound inferred from the siope 
of the rising edge of a “spike” and the experimental slope seem to be decreased by 
about the same amount, so the actual growth rate is still surprisingly close to the 
upper bound. 

If two computed systems separate in this way, a computed system must depart 
from a physical system, or from a system that represents a correct integration of 
the differential equations, in the same way. The argument reduces to that used, for 
example, by Henrici [9] in studies of the stability of discrete-variable and finite- 
difference systems. The two systems of Section II are now the physical or mathe- 
matical system on the one hand and the computed system on the other. 

The conclusions reached in this paper are independent of the particular canonical 
representation used in Eq. (7). Two systems cannot be prevented from diverging 
merely by looking at them from a different coordinate system. Stated differently, 
the physics cannot depend on the canonical representation used in deriving the 
results. This means that various ingenious transformations that might be intro- 
duced to regularize the treatment of close encounters, for example, cannot produce 
long-term improvements in the calculation. 

The fact that the gravitational n-body calculation, even with the iterative refine- 
ment of the first integrals, departs exponentially from a physical trajectory, raises 
the question as to the value of such computations. Most attributes of the system 
must be determined through some kind of averaging process-+ither an ensemble 
average (many calculations, each started from a different, but somehow equivalent, 
initial condition) or a time average (same system, looked at at different times). 
Formally, the two averages are equivalent under the ergodic hypothesis. But it is 
not at all clear in what sense, if at all, the ergodic hypothesis applies to computed 
systems. Normally, time averages should extend over a time long compared to a 
characteristic time determined from the autocorrelation of the function being 
studied [lo, 1 I]. The correlations die out in a fairly short time due to numerical 
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effects, according to the results of this paper. But does that assure the validity of 
time averages as approximations to ensemble averages? Or does it diminish its 
validity ? The loss of even so fundamental an attribute of the differential-equation 
systems or physical systems as the Liouville theorem, which cannot hold for the 
numerical system, is quite disturbing. 

One obvions way to get ensemble averages is through the use of Monte Carlo 
calculations. It should not be difficult to construct an ensemble of systems with the 
desired values of all ten first integrals. Why should an integration give better results 
than Monte Carlo ? Presumably, the integration is somehow closer to the physics 
than a Monte Carlo random selection of systems. The integration can, somehow, 
take account of the many-particle correlations that dominate n-body systems. 
These are difficult to include in Monte Carlo calculations, especially since their 
nature is a priori unknown. In particular, one hopes that the integration, imperfect 
as it is, properly accounts for the many-particle terms. But this is at most a pious 
hope. Any effects in the many-body correlations, that develop slowly compared to 
the e-folding time over which the numerical calculation may be regarded as being 
“locally close” to some real physical system, must be lost to the integration as well. 
The integration can most safely be regarded as a kind of Monte Carlo calculation 
in which correlation effects that evolve in times on the order of the e-folding time 
of the growth of A2 (or faster) are properly taken into account. 

It is sometimes argued that the departure of a computed system from the physical 
system it is supposed to mimic adequately takes account of real physical effects 
that are not built into the problem as formulated. In the gravitational n-body 
problem, for example, numerical effects might mimic the effect of the galaxy on 
the star cluster being studied, or of other irregularities in the background force 
field. That seems to be a dangerous attitude; it is certainly safer to have all error 
terms understood, with such effects being intentionally introduced in a controlled 
and understood manner. It is also frequently argued that the departures of the 
computed system from the physical system occur in such a way that the computed 
system “heads for more probable regions of the phase space.” The same objections 
hold again-how does one know that a computed system that cannot follow the 
track of a physical system will populate the phase space with the same or even a 
similar probability distribution ? 

Certainly the numerical difficulties make it almost impossible to conduct 
carefully controlled experiments. For example, it would be difficult to design a 
numerical experiment to test the effect of surrounding each particle with a hard 
sphere in addition to its gravitational force field, because differences between 
systems with and without the hard sphere could easily be no greater than would 
appear between two systems, neither of which had the hard sphere interaction, but 
were somehow slightly disturbed to force them down different evolutionary tracks. 

This does not mean that gravitational n-body calculations are useless. Many 
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valuable things can be learned from them. But the studies must be directed toward 
clear-cut qualitative effects, rather than toward subtle quantitative effects. And, 
preferably, effects once found should be confirmed either by other kinds of 
numerical experiments or by theory and/or experiment. Internal consistency 
experiments along the lines suggested in [2] are also useful. The results reported 
in this paper, for example, were confirmed by seeing that the same general efrect 
was present in every run starting from various initial conditions and using a 
variety of initial perturbations. 

One way of interpreting these results is by considering a “numerical reiaxation 
time,” to be identified with the e-folding time of AZ. This is admittedly unphysical, 
since its origin is precisely in the difference between computed and physical systems. 
But it may be possible, by considering that the computed system has this one extra 
relaxation process that the physical system lacks, to draw valid inferences about 
physical systems from the behavior of computed systems. It is implicit, in the 
notion of treating numerical effects like relaxation processes, that the irrcversibie 
results of roundoff and truncation errors, as amplified by the character of the 
differential equations, indeed drive the system toward more probable parts of the 
phase space. Although this is uncertain, as pointed out earlier, it accords with rhe 
inherently optimistic nature of the numerical experimenter, and this hopes of 
retrieving something from his computations. 
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